仗劳勤学网

Markov过程实际例子(markov decision process)

本篇目录:

从马尔可夫模型到隐马尔可夫模型

具体讲一下 隐马尔可夫模型。和普通的马尔可夫不一样,马尔可夫模型是可以确定状态序列的。也就是说序列上的每个项的分布是怎么样的是已知的。而隐马尔可夫模型是连序列上的每个项的是什么分布都不能够知道,都是随机的。

隐马尔科夫模型 : 给定一段DNA序列片段,识别细胞色素C的核心功能区域部分。

Markov过程实际例子(markov decision process)-图1

隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。

给出工作生活中马尔可夫链的一个例子。

1、马尔可夫链模型可以分析一个人在某一阶段内由一个职位调到另一个职位的可能性,即调动的概率。该模型的一个基本假设就是,过去的内部人事变动的模式和概率与未来的趋势大体相一致。

2、具体例子: 灯泡寿命问题,灯泡其实在每个时间点上都有一定的可能性会损坏,在这个时间点上损坏的可能性符合一个具体的正态分布(其 是确定的),而随着时间的久远,灯泡损坏的可能性就变大了。

3、就把下面这幅图想象成是一个马尔可夫链吧。实际就是一个随机变量随时间按照马尔可夫性进行变化的过程。

Markov过程实际例子(markov decision process)-图2

4、马尔科夫链的数学背景 马尔可夫链,因安德烈马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。

能否用通俗易懂的例子,举例说明究竟什么是马尔可夫链

1、荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。

2、马尔可夫链模型可以分析一个人在某一阶段内由一个职位调到另一个职位的可能性,即调动的概率。该模型的一个基本假设就是,过去的内部人事变动的模式和概率与未来的趋势大体相一致。

3、一般来说,HMM中说到的马尔可夫链其实是指隐含量链,因为隐含量(骰子)之间存在转换概率的。在我们这个例子里,D6的下一个状态是D4,D6,D8的概率都是1/3。

Markov过程实际例子(markov decision process)-图3

4、也就是HMM的数量,倒不是大问题,因为这是线性增长的,多一倍求解时间只多一倍,一般都能接受经典例子:掷骰子假设我手里有三个不同的骰子。

5、在简单的马尔可夫模型(如马尔可夫链),所述状态是直接可见的观察者,因此状态转移概率是唯一的参数。在隐马尔可夫模型中,状态是不直接可见的,但输出依赖于该状态下,是可见的。

到此,以上就是小编对于markov decision process的问题就介绍到这了,希望介绍的几点解答对大家有用,有任何问题和不懂的,欢迎各位老师在评论区讨论,给我留言。

分享:
扫描分享到社交APP
上一篇
下一篇